Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
World J Gastroenterol ; 29(19): 3013-3026, 2023 May 21.
Article in English | MEDLINE | ID: covidwho-20233965

ABSTRACT

BACKGROUND: Prolonged symptoms after corona virus disease 2019 (Long-COVID) in dialysis-dependent patients and kidney transplant (KT) recipients are important as a possible risk factor for organ dysfunctions, especially gastrointestinal (GI) problems, during immunosuppressive therapy. AIM: To identify the characteristics of GI manifestations of Long-COVID in patients with dialysis-dependent or KT status. METHODS: This observational, prospective study included patients with COVID-19 infection, confirmed by reverse transcription polymerase chain reaction, with the onset of symptoms between 1 January 2022 and 31 July 2022 which was explored at 3 mo after the onset, either through the out-patient follow-up or by telephone interviews. RESULTS: The 645 eligible participants consisted of 588 cases with hemodialysis (HD), 38 patients with peritoneal dialysis (PD), and 19 KT recipients who were hospitalized with COVID-19 infection during the observation. Of these, 577 (89.5%) cases agreed to the interviews, while 64 (10.9%) patients with HD and 4 (10.5%) cases of PD were excluded. The mean age was 52 ± 11 years with 52% women. The median dialysis duration was 7 ± 3 and 5 ± 1 years for HD and PD groups, respectively, and the median time post-transplantation was 6 ± 2 years. Long-COVID was identified in 293/524 (56%) and 21/34 (62%) in HD and PD, respectively, and 7/19 (37%) KT recipients. Fatigue was the most prevalent (96%) of the non-GI tract symptoms, whereas anorexia (90.9%), loss of taste (64.4%), and abdominal pain (62.5%) were the first three common GI manifestations of Long-COVID. Notably, there were 6 cases of mesenteric panniculitis from 19 patients with GI symptoms in the KT group. CONCLUSION: Different from patients with non-chronic kidney disease, there was a high prevalence of GI manifestations of Long-COVID in dialysis-dependent patients and KT recipients. An appropriate long-term follow-up in these vulnerable populations after COVID-19 infection is possibly necessary.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Kidney Failure, Chronic , Kidney Transplantation , Humans , Female , Adult , Middle Aged , Male , Renal Dialysis/adverse effects , Kidney Transplantation/adverse effects , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/therapy , Prospective Studies , Post-Acute COVID-19 Syndrome , Cohort Studies , Gastrointestinal Diseases/diagnosis , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/etiology
2.
Diseases ; 11(2)2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2299382

ABSTRACT

The WHO declared coronavirus disease 2019 (COVID-19) a pandemic in March 2020, which was caused by novel coronavirus severe acute respiratory coronavirus 2 (SARS-CoV-2). SARS-CoV-2 made its first entry into the world in November 2019, and the first case was detected in Wuhan, China. Mutations in the SARS-CoV-2 genome distressed life in almost every discipline by the extended production of novel viral variants. In this article, authorized SARS-CoV-2 vaccines including mRNA vaccines, DNA vaccines, subunit vaccines, inactivated virus vaccines, viral vector vaccine, live attenuated virus vaccines and mix and match vaccines will be discussed based on their mechanism, administration, storage, stability, safety and efficacy. The information was collected from various journals via electronic searches including PubMed, Science Direct, Google Scholar and the WHO platform. This review article includes a brief summary on the pathophysiology, epidemiology, mutant variants and management strategies related to COVID-19. Due to the continuous production and unsatisfactory understanding of novel variants of SARS-CoV-2, it is important to design an effective vaccine along with long-lasting protection against variant strains by eliminating the gaps through practical and theoretical knowledge. Consequently, it is mandatory to update the literature through previous and ongoing trials of vaccines tested among various ethnicities and age groups to gain a better insight into management strategies and combat complications associated with upcoming novel variants of SARS-CoV-2.

3.
Front Cell Infect Microbiol ; 12: 929430, 2022.
Article in English | MEDLINE | ID: covidwho-2022653

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a substantial number of deaths around the world, making it a serious and pressing public health hazard. Phytochemicals could thus provide a rich source of potent and safer anti-SARS-CoV-2 drugs. The absence of approved treatments or vaccinations continues to be an issue, forcing the creation of new medicines. Computer-aided drug design has helped to speed up the drug research and development process by decreasing costs and time. Natural compounds like terpenoids, alkaloids, polyphenols, and flavonoid derivatives have a perfect impact against viral replication and facilitate future studies in novel drug discovery. This would be more effective if collaboration took place between governments, researchers, clinicians, and traditional medicine practitioners' safe and effective therapeutic research. Through a computational approach, this study aims to contribute to the development of effective treatment methods by examining the mechanisms relating to the binding and subsequent inhibition of SARS-CoV-2 ribonucleic acid (RNA)-dependent RNA polymerase (RdRp). The in silico method has also been employed to determine the most effective drug among the mentioned compound and their aquatic, nonaquatic, and pharmacokinetics' data have been analyzed. The highest binding energy has been reported -11.4 kcal/mol against SARS-CoV-2 main protease (7MBG) in L05. Besides, all the ligands are non-carcinogenic, excluding L04, and have good water solubility and no AMES toxicity. The discovery of preclinical drug candidate molecules and the structural elucidation of pharmacological therapeutic targets have expedited both structure-based and ligand-based drug design. This review article will assist physicians and researchers in realizing the enormous potential of computer-aided drug design in the design and discovery of therapeutic molecules, and hence in the treatment of deadly diseases.


Subject(s)
Biological Products , COVID-19 Drug Treatment , Biological Products/pharmacology , Biological Products/therapeutic use , Drug Design , Humans , SARS-CoV-2 , Virus Replication
4.
Publications ; 10(3):28, 2022.
Article in English | MDPI | ID: covidwho-1987929

ABSTRACT

Coronavirus disease 2019 (COVID-19) has been reported to affect malaria intervention strategies, the suspension of malaria elimination programs, and the publication of malaria research. We compared differences in authorship, affiliations, countries, funding sources, article types, keywords, languages, and citations between studies published before and during the COVID-19 pandemic. The searches were performed online using the Scopus database on 8 April 2022. The searches were limited to two periods: before the COVID-19 pandemic (2018–2019) and during the COVID-19 pandemic (2020–2021). The information of authorship, affiliations, countries, funding sources, article types, keywords, languages, and citations between studies published before and during the COVID-19 pandemic were compared using frequency and percentage. The relationships between the most productive authors, countries, affiliations, journals, and frequently used keywords were visualized using the VOSviewer (version 1.6.18) software. A total of 2965 articles were identified in two periods and, among those, 1291 relevant studies were included. There was no difference in malaria publications before and during the COVID-19 pandemic (679 articles, 52.6% vs. 612 articles, 47.4%). Compared between the two periods, the preliminary trend of malaria publications in terms of authorship, affiliations, countries, funding sources, article types, keywords, languages, and citations were different. In conclusion, the current study showed the preliminary trends in malaria publications before and during the COVID-19 pandemic. The findings of this study would encourage researchers to perform a scoping review or systematic review to better understand the direction of malaria publications during the COVID-19 pandemic.

5.
Biomed Pharmacother ; 154: 113522, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1982625

ABSTRACT

Since the start of the COVID-19 pandemic, numerous variants of SARS-CoV-2 have been reported worldwide. The advent of variants of concern (VOCs) raises severe concerns amid the serious containment efforts against COVID-19 that include physical measures, pharmacological repurposing, immunization, and genomic/community surveillance. Omicron variant (B.1.1.529) has been identified as a highly modified, contagious, and crucial variant among the five VOCs of SARS-CoV-2. The increased affinity of the spike protein (S-protein), and host receptor, angiotensin converting enzyme-2 (ACE-2), due to a higher number of mutations in the receptor-binding domain (RBD) of the S-protein has been proposed as the primary reason for the decreased efficacy of majorly available vaccines against the Omicron variant and the increased transmissible nature of the Omicron variant. Because of its significant competitive advantage, the Omicron variant and its sublineages swiftly surpassed other variants to become the dominant circulating lineages in a number of nations. The Omicron variant has been identified as a prevalent strain in the United Kingdom and South Africa. Furthermore, the emergence of recombinant variants through the conjunction of the Omicron variant with other variants or by the mixing of the Omicron variant's sublineages/subvariants poses a major threat to humanity. This raises various issues and hazards regarding the Omicron variant and its sublineages, such as an Omicron variant breakout in susceptible populations among fully vaccinated persons. As a result, understanding the features and genetic implications of this variant is crucial. Hence, we explained in depth the evolution and features of the Omicron variant and analyzed the repercussions of spike mutations on infectiousness, dissemination ability, viral entry mechanism, and immune evasion. We also presented a viewpoint on feasible strategies for precluding and counteracting any future catastrophic emergence and spread of the omicron variant and its sublineages that could result in a detrimental wave of COVID-19 cases.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , Humans , Pandemics , SARS-CoV-2/genetics , Virus Internalization
6.
Molecules ; 27(15)2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1957395

ABSTRACT

COVID-19, caused by the coronavirus SARS-CoV-2, emerged in late December 2019 in Wuhan, China. As of 8 April 2022, the virus has caused a global pandemic, resulting in 494,587,638 infections leading to 6,170,283 deaths around the world. Although several vaccines have received emergency authorization from USA and UK drug authorities and two more in Russia and China, it is too early to comment on the prolonged effectiveness of the vaccines, their availability, and affordability for the developing countries of the world, and the daunting task to vaccinate 7 billion people of the world with two doses of the vaccine with additional booster doses. As a result, it is still worthwhile to search for drugs and several promising leads have been found, mainly through in silico studies. In this study, we have examined the binding energies of several alkaloids and anthocyanin derivatives from the Solanaceae family, a family which contains common consumable vegetables and fruit items such as eggplant, pepper, and tomatoes. Our study demonstrates that Solanaceae family alkaloids such as incanumine and solaradixine, as well as anthocyanins and anthocyanidins, have very high predicted binding energies for the 3C-like protease of SARS-CoV-2 (also known as Mpro). Since Mpro is vital for SARS-CoV-2 replication, the compounds merit potential for further antiviral research towards the objective of obtaining affordable drugs.


Subject(s)
Alkaloids , COVID-19 Drug Treatment , Solanaceae , Alkaloids/pharmacology , Anthocyanins , Antiviral Agents/chemistry , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Peptide Hydrolases/metabolism , Phytochemicals/pharmacology , Protease Inhibitors/chemistry , SARS-CoV-2 , Solanaceae/metabolism , Vegetables/metabolism , Viral Nonstructural Proteins/metabolism
7.
Plants (Basel) ; 11(11)2022 May 24.
Article in English | MEDLINE | ID: covidwho-1875735

ABSTRACT

The secondary metabolites of endemic plants from the Rutaceae family, such as Burkillanthusmalaccensis (Ridl.) Swingle from the rainforest of Malaysia, has not been studied. Burkillanthusmalaccensis (Ridl.) Swingle may produce antibacterial and antibiotic-potentiating secondary metabolites. Hexane, chloroform, and methanol extracts of leaves, bark, wood, pericarps, and endocarps were tested against bacteria by broth microdilution assay and their antibiotic-potentiating activities. Chromatographic separations of hexane extracts of seeds were conducted to investigate effective phytochemicals and their antibacterial activities. Molecular docking studies of werneria chromene and dihydroxyacidissiminol against SARS-CoV-2 virus infection were conducted using AutoDock Vina. The methanol extract of bark inhibited the growth of Staphylococcusaureus, Escherichiacoli, and Pseudomonasaeruginosa with the minimum inhibitory concentration of 250, 500, and 250 µg/mL, respectively. The chloroform extract of endocarps potentiated the activity of imipenem against imipenem-resistant Acinetobacterbaumannii. The hexane extract of seeds increased the sensitivity of P. aeruginosa against ciprofloxacin and levofloxacin. The hexane extract of seeds and chloroform extract of endocarps were chromatographed, yielding werneria chromene and dihydroxyacidissiminol. Werneria chromene was bacteriostatic for P.aeruginosa and P.putida, with MIC/MBC values of 1000 > 1000 µg/mL. Dihydroxyacidissiminol showed the predicted binding energies of -8.1, -7.6, -7.0, and -7.5 kcal/mol with cathepsin L, nsp13 helicase, SARS-CoV-2 main protease, and SARS-CoV-2 spike protein receptor-binding domain S-RBD. Burkillanthusmalaccensis (Ridl.) Swingle can be a potential source of natural products with antibiotic-potentiating activity and that are anti-SARS-CoV-2.

8.
Molecules ; 27(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625268

ABSTRACT

The focus of this roadmap is to evaluate the possible efficacy of Artemisia herba-alba Asso. (Asteraceae) for the treatment of COVID-19 and some of its symptoms and several comorbidities using a combination of in silico (molecular docking) studies, reported ethnic uses, and pharmacological activity studies of this plant. In this exploratory study, we show that various phytochemicals from Artemisia herba-alba can be useful against COVID-19 (in silico studies) and for its associated comorbidities. COVID-19 is a new disease, so reports of any therapeutic treatments against it (traditional or conventional) are scanty. On the other hand, we demonstrate, using Artemisia herba-alba as an example, that through a proper search and identification of medicinal plant(s) and their phytochemicals identification using secondary data (published reports) on the plant's ethnic uses, phytochemical constituents, and pharmacological activities against COVID-19 comorbidities and symptoms coupled with the use of primary data obtained from in silico (molecular docking and molecular dynamics) studies on the binding of the selected plant's phytochemicals (such as: rutin, 4,5-di-O-caffeoylquinic acid, and schaftoside) with various vital components of SARS-CoV-2, it may be possible to rapidly identify plants that are suitable for further research regarding therapeutic use against COVID-19 and its associated symptoms and comorbidities.


Subject(s)
Artemisia/chemistry , COVID-19 Drug Treatment , Plant Extracts/chemistry , Plant Extracts/pharmacology , COVID-19/epidemiology , Comorbidity , Coronavirus 3C Proteases/chemistry , Ethnobotany/methods , Ligands , Molecular Docking Simulation , Molecular Dynamics Simulation , Phytochemicals/chemistry , Plants, Medicinal/chemistry
9.
Nutrients ; 14(2)2022 Jan 13.
Article in English | MEDLINE | ID: covidwho-1625635

ABSTRACT

Severe acute respiratory syndrome (SARS)-CoV-2 virus causes novel coronavirus disease 2019 (COVID-19) with other comorbidities such as diabetes. Diabetes is the most common cause of diabetic nephropathy, which is attributed to hyperglycemia. COVID-19 produces severe complications in people with diabetes mellitus. This article explains how SARS-CoV-2 causes more significant kidney damage in diabetic patients. Importantly, COVID-19 and diabetes share inflammatory pathways of disease progression. SARS-CoV-2 binding with ACE-2 causes depletion of ACE-2 (angiotensin-converting enzyme 2) from blood vessels, and subsequently, angiotensin-II interacts with angiotensin receptor-1 from vascular membranes that produce NADPH (nicotinamide adenine dinucleotide hydrogen phosphate) oxidase, oxidative stress, and constriction of blood vessels. Since diabetes and COVID-19 can create oxidative stress, we hypothesize that COVID-19 with comorbidities such as diabetes can synergistically increase oxidative stress leading to end-stage renal failure and death. Antioxidants may therefore prevent renal damage-induced death by inhibiting oxidative damage and thus can help protect people from COVID-19 related comorbidities. A few clinical trials indicated how effective the antioxidant therapy is against improving COVID-19 symptoms, based on a limited number of patients who experienced COVID-19. In this review, we tried to understand how effective antioxidants (such as vitamin D and flavonoids) can act as food supplements or therapeutics against COVID-19 with diabetes as comorbidity based on recently available clinical, preclinical, or in silico studies.


Subject(s)
Antioxidants/therapeutic use , COVID-19/complications , Diabetic Nephropathies/complications , Diabetic Nephropathies/prevention & control , Oxidative Stress/drug effects , Humans , Patient Acuity , SARS-CoV-2
10.
Biomed Pharmacother ; 146: 112507, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1556976

ABSTRACT

Lectins or clusters of carbohydrate-binding proteins of non-immune origin are distributed chiefly in the Plantae. Lectins have potent anti-infectivity properties for several RNA viruses including SARS-CoV-2. The primary purpose of this review is to review the ability of lectins mediated potential biotherapeutic and bioprophylactic strategy against coronavirus causing COVID-19. Lectins have binding affinity to the glycans of SARS-COV-2 Spike glycoprotein that has N-glycosylation sites. Apart from this, the complement lectin pathway is a "first line host defense" against the viral infection that is activated by mannose-binding lectins. Mannose-binding lectins deficiency in serum influences innate immunity of the host and facilitates infectious diseases including COVID-19. Our accumulated evidence obtained from scientific databases particularly PubMed and Google Scholar databases indicate that mannose-specific/mannose-binding lectins (MBL) have potent efficacies like anti-infectivity, complement cascade induction, immunoadjuvants, DC-SIGN antagonists, or glycomimetic approach, which can prove useful in the strategy of COVID-19 combat along with the glycobiological aspects of SARS-CoV-2 infections and antiviral immunity. For example, plant-derived mannose-specific lectins BanLac, FRIL, Lentil, and GRFT from red algae can inhibit and neutralize SARS-CoV-2 infectivity, as confirmed with in-vitro, in-vivo, and in-silico assessments. Furthermore, Bangladesh has a noteworthy resource of antiviral medicinal plants as well as plant lectins. Intensifying research on the antiviral plant lectins, adopting a glyco-biotechnological approach, and with deeper insights into the "glycovirological" aspects may result in the designing of alternative and potent blueprints against the 21st century's biological pandemic of SARS-CoV-2 causing COVID-19.


Subject(s)
Antiviral Agents/therapeutic use , Biological Therapy/methods , COVID-19/prevention & control , Disease Eradication/methods , Plant Lectins/therapeutic use , SARS-CoV-2/drug effects , Animals , Antiviral Agents/isolation & purification , Antiviral Agents/pharmacology , Biological Therapy/trends , COVID-19/epidemiology , Disease Eradication/trends , Humans , Plant Lectins/isolation & purification , Plant Lectins/pharmacology
11.
Pharmaceutics ; 13(11)2021 Nov 08.
Article in English | MEDLINE | ID: covidwho-1512541

ABSTRACT

Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of 'variants of concern'. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.

12.
PLoS Negl Trop Dis ; 15(10): e0009766, 2021 10.
Article in English | MEDLINE | ID: covidwho-1448571

ABSTRACT

BACKGROUND: The world population is currently at a very high risk of Coronavirus disease-2019 (COVID-19), caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2). People who live in malaria-endemic areas and get infected by SARS-CoV-2 may be at increased risk of severe COVID-19 or unfavorable disease outcomes if they ignore their malaria status. Therefore, the present study aimed to synthesize, qualitatively and quantitatively, information on the prevalence and characteristics of malaria infection among COVID-19-infected individuals. The findings will help us better understand this particular comorbidity during the COVID-19 pandemic. METHODS: The systematic review protocol was registered at the International Prospective Register of Systematic Reviews (PROSPERO) with the identification number: CRD42021247521. We searched for studies reporting on the coinfection of COVID-19 and malaria in PubMed, Web of Science, and Scopus from inception to March 27, 2021 using Medical Subject Headings (MeSH) terms. The study's methodological quality in the search output was assessed using the Joanna Briggs Institute (JBI) Critical Appraisal Tools for cross-sectional study. The pooled prevalence of Plasmodium spp. infection among patients infected with COVID-19 was estimated using the random effect model and then graphically presented as forest plots. The heterogeneity among the included studies was assessed using Cochrane Q and I2 statistics. The characteristics of patients co-infected with COVID-19 and malaria were derived from case reports and series and were formally analyzed using simple statistics. RESULTS: Twelve of 1,207 studies reporting the coinfection of COVID-19 and malaria were selected for further analysis. Results of quantitative synthesis show that the pooled prevalence of Plasmodium spp. infection (364 cases) among COVID-19 individuals (1,126 cases) is 11%, with a high degree of heterogeneity (95% CI: 4%-18%, I2: 97.07%, 5 studies). Most of the coinfections were reported in Nigeria (336 cases), India (27 cases), and the Democratic Republic of Congo (1 case). Results of qualitative synthesis indicate that patients with coinfection are typically symptomatic at presentation with mild or moderate parasitemia. An analysis of case reports and series indicates that co-infected individuals often display thrombocytopenia, lymphopenia, and elevated bilirubin levels. Among four patients (30%) who required treatment with intravenous artesunate, one experienced worsened clinical status after administering the drug. One serious outcome of coinfection involved a pregnant woman who experienced fetal abortion due to the initial misdiagnosis of malaria. CONCLUSIONS: All individuals in malaria-endemic regions who are febrile or display symptoms of COVID-19 should be evaluated for malaria to avoid serious complications. Further prospective studies are required to investigate the burden and outcomes of COVID-19 in malaria-endemic regions. Prompt management is required to prevent serious outcomes in individuals co-infected with COVID-19 and malaria.


Subject(s)
COVID-19/epidemiology , Coinfection/epidemiology , Malaria/epidemiology , SARS-CoV-2 , COVID-19/therapy , Humans , Parasitemia/epidemiology , Prevalence
13.
Asian Pac J Allergy Immunol ; 2021 Jan 02.
Article in English | MEDLINE | ID: covidwho-1005115

ABSTRACT

BACKGROUND: Two main strategies to cope with the coronavirus disease 2019 (COVID-19) pandemic-lockdown (social restriction) and non-lockdown (herd immunity plan)-have been implemented in several countries. OBJECTIVE: This study aims to statistically compare the outcomes of the two strategies, represented by data from Thailand and Sweden, respectively. METHODS: Data for COVID-19 pandemic control from Thailand, representing social restriction, versus data from Sweden, representing the herd immunity plan, collected from January 13 to May 31, 2020, were analyzed by using the SIR (susceptible, infectious, recovered) model. RESULTS: The SIR model analysis demonstrated a beneficial effect of each model on the attenuation of the mortality rate, with lower mortality in social restriction and shorter overall pandemic duration in the herd immunity plan. However, the herd immunity plan demonstrated a higher mortality rate than social restriction (46.9% versus 1.9%) despite the later entry of the virus in Sweden. When the SIR model was used for predicting the COVID-19 status, Sweden was shown to likely end its COVID-19 epidemic earlier than Thailand (268 vs. 368 days). With the nonlinear estimation, at least one log difference between total confirmed cases versus active cases could be used as an indicator for relaxation of the lockdown policy in Thailand. CONCLUSIONS: Both the social restriction and herd immunity plans are beneficial for COVID-19 pandemic control in terms of the amelioration of pandemic mortality. The cumulative number of total recovered cases might be a potential parameter that could be used for determining the policy direction for COVID-19 control.

SELECTION OF CITATIONS
SEARCH DETAIL